15ABS08-MATHEMATICS-III

(Common for all Branches)

L T P C 3 1 0 3

Objectives:

• This course aims at providing the student with the concepts and applications of Matrices, Numerical Techniques and Curve fitting.

UNIT - I

Elementary row transformations-Rank – Echelon form, normal form – Consistency of System of Linear equations. Linear transformations. Hermitian, Skew-Hermitian and Unitary matrices and their properties. Eigen Values, Eigen vectors for both real and complex matrices. Cayley – Hamilton Theorem and its applications – Diagonolization of matrix. Calculation of powers of matrix and inverse of a matrix. Quadratic forms – Reduction of quadratic form to canonical form and their nature.

UNIT - II

Solution of Algebraic and Transcendental Equations: The Bisection Method – The Method of False Position– Newton-Raphson Method, Solution of linear simultaneous equation: Crout's triangularisation method, Gauss - Seidal iteration method.

UNIT - III

Interpolation: Newton's forward and backward interpolation formulae – Lagrange's formulae. Gauss forward and backward formula, Stirling's formula, Bessel's formula.

UNIT-IV

Curve fitting: Fitting of a straight line – Second degree curve – Exponentional curve-Power curve by method of least squares. Numerical Differentiation for Newton's interpolation formula. Numerical Integration: Newton's – Cotes formula - Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule.

UNIT - V

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive approximations-Euler's, Runge-Kutta 2nd and 4th order Methods-Milne's Predictor-Corrector Methods.

Text Books:

- 3. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, PHI publisher.

MO 11 2.7.2018